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’
Abstract travel time by use of interfaces with zero reflec-
tion coefficients). We shall develop a minimum-
Recently, a new class of time-domain state variance state estimator for uniform causal func-
space models has been developed (Ref. 11 and 12) tional equations.
to describe layered media systems. When layers
are uniform, the resulting state equations are Our uniform causal functional state space
referred to as uniform causal functional equa- model, denoted ,J in the sequel, is described by
tions. In this paper we develop the minimum- the following state and observation equations:
variance state estimator for such equations. We 7
are led to a natural form of parallel data pro- x(t+t) = A x(t) + B m(e) + w(t) (1)
cessing for practical implementation of our
‘estimator.
y(t) = H x(t) + n(c) - (2)
InJ 5 xcl . ncll is a known input, vcll is a ran-
1. Introduction dom disturbance, zhk’. neRS is rand t
. noise, AcRP*M, BeRM*T  and HeRS*M. For J. the
During the past few years there has been following initial interval infomtion is assumed
great interest in modeiing layered media systems known:
(Refs. 1-12, for example) in such diverse areas ;
as reflection seismology, transmission lines, x(0) where o eJ and J = (0,7) 3)
i speech processing, optical thin coatings and 3
EM problems. Traditicnally, the models have been In Eqs. (1) and (3), t is the uniform time delay.
transfer function models; however, recently Nahi An example which illustrates the genesis of Egs.
and Mendel (Ref. 11) and Mendel, et al. (Ref. 12) (1) and (2) for seismic waves in layered media is
have shown that such systems can be modeled in given in Reference 1l.
the time-domain by what appears to be a new class
of state equations, causal functional equations. Some discussion is in order regarding noise
These equations arise in a natural way when model- processes w(t) and n(t). For differential systeas
ing lossless layered media which are described by we usually assume that w(t) and n(t) are vhite
the wave equation and boundary gonditions, through noise processes, in which case E-(v(t) w' ()} =
the use of ray thcory. Q 8(t-g) and E{n{t) n'(€)} = R &§(t-£). For such
systems, the correlation value must contribute
Causal functional equations are, in general, finite values in infinitesimal intervals. In order
1linear continunus-time equations with multiple te have nonzero mcasure, the correlation value must
time delays (due to layers of different travel be infinite over the infinitesimal interval. This
times). Trey do not contain integrals or deri- problem does not arise for causal functional equa-
vatives; hence, they are not integral or differen- tions. In fact, we would not want v(t). for ex-
tial equaticns; nor are they finite-difference ample, to be a white noise process; for, then x(t)
d equations. As is the case with delay-time systems, would also be white noise, which does not make
they require initial value information over sense.
initial intervals of time. Becausec of their pure
delay-nature, their impulse responsc is comprised We shall show, in Theorem 1 below, that causal i
of an infinite sequence of non-uniformly spaced functional equations have solutions that are quite i
inpulse functicns [se~ Mendel, et al. (Ref. 12) similar to the solutions of finite-differcnce’ !
for specific details into the nature of causal equations. Our second-order noise statistics
v functional equation]). skould thercfore be closer to those of a discrete-
- time system. [Recall thar if w(k) and n(k) are
In this paper we cdirect our attention at the discrete-time white noisc scquences, then E{w({)
special, but very important and useful, case cf w'(J)} = Q8;5 and E{n(1) n'(j)} = R8;4 where &
a uniform causal functional equations, in which all is the Kronecker delta function, vhicg is equa{ to j
time declays are equal. This occurs when all unity for 1=j and is equal to zero for i¢#j.] :
layers have cqual travel tiames (laycrs of unequal m m N
travel .ime can be built up from lauyers of equal STA .. |
AIR FORCE OFFICE OF SCIENTIFIC RESLALCH ALW,WW" for publio release;
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In our work we assume that w(t) and n(t) are
mutually uncorrelated Ornstein-Uhlenbeck processes
(Ref. 16 and 17). According to Parzen (Ref. 18),
a stochastic process {x(t), t>0} is said to be an
Ornstein-Uhlenbeck process with parameters a>0
and B>0 1f it is a gaussian process satisfying
E{x(t)} = 0 and E(x(t) x(§)} = a e‘alE‘CT. Feller
(Ref. 19) states that the Ornstcin-Uhlenbeck
process is obtained by subjecting the particles
of a Brownian motion to an elastic force.

Parzen states further that the Ornstein-Uhlen-
beck process is a model for Brownian motion
wvhich 1s somewhat more realistic than a Wiener
process.

We can achieve the effect of a Kronecker
delta in the second-order statistics of the
Ornstein-Uhlenbeck process by letting B+». 1In
this case, E{x(t) x(§))} = a 1f ¢t = £ and E{x(t)
x(€)} = 0 if t # £. More succinctly, for an
Ornstein-Uhlenbeck process {x(t), t>0} for which
B+, E{x(t) x(£)} = a ;5. We shall assume that
w(t) and n(t) are vector Ornstein-Uhlenbeck
processes, each of whose components has the pre-
ceding property; i.e., we assume that w(t) and
n(t) are gaussian processes, for which

E{w(t)} = 0 and E{n(t)} = 0 ¥ teR § [0,=) (4)

E{w(t) w'(0))} = Q8¢ v, EeR (5)
E(n(t) n'(E)) = Ré¢ Ve, tel (6)
and

E{w(t) a'()} = 0 Ve, gl m

To complete the description of J we must
specify the statistics of our initial interval
information in (3). We shall assume that x(o)
(oed)) is also an Ornstein-Uhlenbeck process for
vhich f+=, and that x(0) is uncorrelated with w(t)
and n(t); i.e., wve assume that x(o) (0:4 ) s
gaussian, and

v oed (8)
Ve, ged - 9)

E(x(o)} = 0

E(x(c) x"(D)} = AS,,

and

E{x(t) w'(£)} = 0 and E{x(t) n'(£)} = 0
v t:J and Cc& 5 (10)

In many layered-media systems (e.g., a lay-
ered earth system) x(c) = 0, ¥ oedJ . For those
systems A = 0 and the two conditions in Eq. (10)
are satisfied because x(0) = 0, ¥ gev/ . For the
sake of generality, we present our results below
for arbitrary x(o), oev/ . For the sake of
simplicity, all our results are given for time-
invariant and stationary systems. It is straight-
forwvard to state them for time-varying and non-
stationary systems [i.e., for the case when
A= A(t), B = B(t), H=H(t), Q= Q(t), R = R(t),
and A = A(e)].

As we have alrcady mentioned, ly.t-/‘ is a
continuous-time system that is closely related to

a discrete-time, formulation. If, for example, we
set t = kt in J, where k=0, 1, 2, ..., and we
assume that m(t) and w(t) are only available at
sample points t = 0, 1, 21, ..., then J reduces to
an equivalent discrete-time.system. Usually, how-
ever, t is much larger than real data sampling
rates (in geophysical applications, data is common-
ly sampled at 1 or 2 msec rates); hence, it would
be necessary to insert many small_layers, whose
interfaces have zero reflection coefficients, to
convert into a practical discrete-time system.
That system would be of very large dimension, and
it is doubtful that a Kalman filter for this high-
order system would be practical. For example, if
v = 20 msec and datais sampled every 1 msec, each
layer (which is described by 2 states, an upgoing
and a downgoing state) would be replaced by 20
layers that would be described by 2 x 20 = 40
states. A 100 layer system would be described by
4,000 states. By our approach, that same 100 layer
system would be described by 200 states.

Section 2 presents some important preliminary
results pertaining to the solution of Eq. (1) and
the statistics of x(t) and y(t). A minimum-wariance
state estimator is derived in Section 3 first for
the case when B = 0 and then for the more general
case when B ¥ 0. Discussions on an implementation
for our state estimator are given in Section 4.

2. Preliminary Results

In this section we present results pertaining
to the solution of Eq. (1) and the statistics of
x(t) and y(t). Throughout this section and the
rest of the paper we use the fact that teR can be
uniquely characterized by the mapping

t =t'+ Mt where t':J and M is an integer (11)
We depict this mapping in Figure 1.

Theorem 1. The solution to the uniform causal
functional equation*

x(t+t) = A x(t) + w(t) ; x(0) oev/ (12)
is

x
xft' + (t)e) = A e ¢+ AT e
1=0
13

wvhere t'ev/ , k=0, 1, 2, ..., and t = t' + (k+l)r.

Observe that (13) explicitly shows how the
state at any time t = t' + (k+l)t depends on an
initial condition x(t') and the input w. It is
of intcrest to note that x(t) depends only on a
single elcment of the initial values x(o) (oc¥’ )

#0ur preliminary results are given in this section
for the B = 0 case. Their extensions to the

B ¢ O case are not needed for our Section 3
results.
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namely x(t'), and a finite number of point valucs
of w. This shows that the solution to the uniform
causal functional state equation, although con-
tinuous-time in nature, derives its values in a
discrete-time fashion for a given fixed value of
t'cyf . O course, there are an uncountable num-
ber of points in/ ; hence, we can imagine x(t)

as being generated by an uncountable number of
discrete-time systems.

Proof of Theorem 1: We use an iterative
argument to justify the solution of Eq. (12),
given in Eq. (13). First pick a t'cy/ . From
Eq. (12), we see that

x(e' + 1) = A x(¢') + w(t") %)
Again, from Eq. (12), we sec that

x(t' + 27) = A x(t' + 1) .+ w(t' + 1) (15)
Substitute Eq. (14) into Eq. (15) to show that

x(t' + 21) = AZx(t') + Aw(t') + u(c' + 1)(16)

Iterating Eq. (12) in this same manner k+l times,
we obtain the solution form in Eq. (13).

Corollary 1. Both x(t) and y(t), te® , are

zero mean gaussian process.

Proof: By assumption, x(o) (oeyf) and w(t)
(teRY are gaussian processes. Equation (13)
demonstrates that x(t) (te®) can be decomposed
into a linear combination of these processes;
hence, since linear combinations of gaussian pro-
cesses are also gaussian (Ref. 13), x(t) is gaus-
stan ¥ te®. Since x(0) (oev/) and w(t) (teR)
are by assumption zero mean, it follows, from
Eq. (13) that x(t) (te R) is also zero mean.

Because the proof of the results for y(t) is
so similar to that just given for x(t), we leave
it to the rcader. Y

Next, we present some important cross-covari-
ance results.

Theorem 2. Let t, and t, be points in .
The 5 .
n

E{x(c,) x'(t,)} = 0 7)
1f

I:l - ‘z' $kt  k=0,1,2,... (18)

This theorem states that x(t) is uncorrelated
at noninteger multiples of the uniform delay time
.

Proof: Time points t; and t; can be express-
ed by means of Eq. (11) as

t, =t' + Mt t'ew/ and M an integer (19a)

1

t, =t + Ut t"es? and J an integer (19b)

From Eqs. (19a), (19b) and (13), we find that

E{x(t,)x"(t,)} = Ef{x(e'+Mr)x'(t"+J1)}

M-1
« E((A"(e) + A"'l"y_(:'ﬂr))

1=0
J-1
Waem + § A7 wemyngn
=0 (20)

If t' ¢ t",. then the right-hand side of Eq. (20)

evaluates to zero, because of Egs. (5), (9), and
(10). We must now ascertain when t' ¢ t".

We shall show that

t' 4" Aff |:1~:2| =kt k=0,1,2,... (21)
Our proofs of both the necessity and sufficiency

of Eq. (21) are by the method of contradiction.

To begin, we assume the truth of t' # t" and assume
also that t) - t; = Ptr, where P = eeey=2,-1,0,1,2,
ees o« From Eqs. (19a) and (195)., this means that

t' -t"+ (M- J)t =Pt (22)
or that
t' -t"=(P-M+ It (23)
Now t', t"ew = [0,7); hence,
T <t -t" < (24)

Consequently, since P, M, and J are all integers,
the only way Eq. (23) can be true is if P-M+J = O,
in which case t' = t"; but, this contradicts the
assumption that t' # t". We conclude, therefore,
that if t' ¥ t", then t; - t2 ¥ Pt, P = ...,-2,-1,
0,1,2,..., which can also be stated as [t;-tp| #
kt, k= 0,1,2,... .

Next, we assume the truth of Itl-t2| # kt,
k = 0,1,2,..., and assume also that t' = t". From
Eqs. (19a) and (19b), this meams that

t -tz-(H-J)t 3 (25)

1
but, this contradicts our assumption that [t;-t,|¢#
kt. We conclude, therefore, that if |tj-ty| # kr,
then t' # t". This completes the proof of Thoerem
2. . :

Corollary 2. Let t; and tj be points inR .
Then

E(y(t))y' ()} = 0 (26)

and
E{y(e,)x'(ep)} =0 (27)

T
ley = eyl #kx k=0,1,2,... (28)

Proof: From Eq. (2), we see that
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Ely(t))y'(c))} = HE(x(t))x"(e,) '
+ E(n(e,)n"(t,) ] + HE(x(t,)n"(t))}
+ Eln(e )x’ (¢,) ' (29)

The first term in this expression Is zero via
Theorem 2. Observe that Eq. (28) implics that
t) ¥ ty; hence, the last three terms in Eq. (29)
are zero via Eqs. (16), (13) and (10).  The proof
of Eq. (27) follows in a similar manner.

In Section 3, where we derive the minimum-
variance estimator for x(t), we assume that mea-
surements, y(t), are available from time zero
up to and including time t. We now introduce
three data sets. Let Y(t) be the set of mea-
surement data which are available up to and includ-
ing time t; i.e.,

Y(e) ~ {(y(}): 0<rct, ceR) (30)

Let YH(t') be a finite set of measurements associa-
ted vith point t'c\/ and integral multiples of 1
from t'; 1i.e.,

v"(c') = {y(t'+jr), § = 0,1,2,...,M} (31)

For j = 0, Yy(t') only contains the single measure-
ment y(t'). For j = M, Yy(t') contains M+l
measurements made at the points labeled t'. t'+t,
eesyt"#Mt in Figure 1. Finally, let Yc(t') be the
set difference between Y(t) and Yy(t'); i.e.,

Yc(t') = Y(t) - YH(t') (32)
Observe from Eqs. (30), (31), and (32) that
Y(t) = Yu(:') v Yc(t') (33)
and '
Yc(t') (g Yu(t') = ¢ (34)

vhere ¢ is the null set.

Theorem 3. Let t be a point in R such that
the representation in Eq. (11) is valid. Then
Yy(t') is statistically independent of Yc(t') and
x(t) is statistically independent of Y.(t').

Proof: We represent t as in Eq. (11) and
choose a typical element, y(t3), from data set
Yc(t'); if.e.,

2(ty) € Y (t") (35)
By construction of Yc(t') we know that

£, = t" + 3 j=0,1,...,M (36)
and t"c¢] . We observe that t" ¢ t'; for, if

t' = t" then t; = t' + jr (j = 0,1,...,M); and
these time points are associated with Yu(t').
From our preceding discussions, we know that
Yy(t') and Yc(t') share no common time points;
hence, t" ¢ t'.

E{y(t)x'(c)} = 0

e e g

Since t' ¥ t", we conclude, from Eq. (21),
that
fe -e] v k=0,1,... (a7
which means that time points in Yo(t') satisfy Eq.
(28); hence, from Eq. (27), we see that

for -~V y(e,) eY.(c") (38)

Since x(t) and y(t) are gaussian (Corollary 1),

the fact in Eq. (38), that y(t;) and x(t) are un-
correlated for ¥ y(tj) € Yc(t') also means that
y(t2) and x(t) are statistically independent (Ref.
13) for v y(e)) € Yc(t').

Next, pick a typical element, z(tl). from
Yn(t'); i.e.,

.
y(t)) € ¥ (') (39)
By construction of Yu(t'), ve know that

e, =t + gt §=0,1,2,...,M (40)
Since t' ¢ t", we know that t, and ty satisfy Eq.
(28); hence, it follows from Eq. (26) that

E(x(tl)x'(tz)} =0 V l.(tz) € Yc(t')
and  y(t)) € Y, (t") (41)

From Corollary 1, this once again means that l(tl)

and y(t;) are statistically independent for

Vv y(ty € Yo(t') and y(t)) < Yu(t'); or, that

Y, (t'§ and Yy(t') are statistically independent.
is completes the proof of Theorem 3.

3. Minimum-Variance State Estimator

To begin, we present the minimum-variance
state estimator for system,? with B=0. The case
of a known forcing function in the state equation
is treated below in Theorem 5.

Theorem 4. For system J , with B=0, the
minimum-variance estimator of x(t), where t = t'
+ Mr, t'eJ and M an integer, is

x(t) = E{x(t) ¥, (")} (42)

This theorem states the interesting result
that the optimal estimator of x(t) need not be
conditioned on the entire data set, Y(t). The
optimal estimator of x(t) need only be conditioned
on data set Yy(t'), a data set which contains only
a finite number of points.

Proof: From estimation theory (Refs. 14 and
15, for ecxample), it 1is well known that the minioum
variance estimator of x(t) is
®(t) = E(x(t)|Y(t)} (43)
which can also be written, using Eq. (33), as

E(6) = E(x(0)|Y, ("), Y (M) )
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Next, we use the fact (proven in Meditch (Ref.
14), pg. 101) that if a, b, and c are gaussian
random vectors and b and c are staristically
independent, then

E{alb,c) = E{a|b} + E(a|c) - E{a) (45)

Since x(t), YH(t ) and Yc(t') are gaussian and

_Yy(t') and Yc(t') are statistically independent

(Theorem 3), we can expand the right-hand side
of Eq. (44) by means of Eq. (45), to obtain

x(t) = E{x(t) [¥, (e} + E{x(t) [Y ("))
- E{x(t)} (46)

Additionally, since x(t) and Yc(t') are statisti-
cally independent (Theorem 3), E{x(t)|Yc(t')} =
E{x(t)}; thus, Eq. (46) reduces to Eq. (42).

Corollary 3. For any fixed t ‘e, x(t) -
X(t'+M1) can be computed by the discrete-time
Kalman filtering equations with t' considered as

the initial starting time. Hence, for t'ed ,
compute x(t'+M1) from the following equations:

x(t"4Mt) = Ax[t' + (M-1)7] + K(t '+Mr) {y(t"+Mr)

- HAX[t' + (M-1)t]) (47)
Ple'#Mt|e’ + (M-1)1) =
AP[t' + (M-1)t|t' + (M-1)T]A' +Q 8)*
K(t'+Mt) = Pt '+Mt|e'+(M-1)1)
o H'(HP[¢ +Mt[c'+(M-1)T]H" + R} 49)*
and
P(t'+Mt[e"#M1) = [I-K(t'"+MT)H])
o Plt'4Mr|e '+(M-1)1]) (50)

wvhere M = 1,2,..., and, x(t') = E{x(t')} and
P(e'|t') = E{x(t")x'(e")T = A.

Proof: Equation (42) states that x(t) is
obtained from a finite point measurement data set.
It can be expressed by means of Eqs. (11) and (31)
as

x(t) = E{x(t'+Mr) |y(e*'),y(t'+1),...,y(t +M1)} (51)

The right-hand side of Eq. (51) is analogous to
the optimal filtered estimatc for a discrete-time
system with u-pung rate equal to t sec and ini-
tial time equal to t'. Our notation in Eq. (47)
for x(t'ﬂlt) is equtvnlent. therefore, to the
notation x(t'+Mr{t'+Mr). Equations (47) through
(S0) are the discrete-time Kalman filter equations
(Ref. 14, for cxample) obtained by replacing dis-
crete variable k in those equations by t' + Mr.

*For nonstat ionary noise process, Q becomes Q[t'
4+ (M-1)t] and R becomes R(t' + Mrt).

We observe, from Corollary 3, that for each
fixed t'c v/ , the optimal estimate of the state
at t' + Mr (M= 1,2,...) 1s obtained by iterating
the familiar Kalnu ﬂlter equations on v, using t'
as the initial starting time. Since there are an
uncountable number of points in.J , this results
in an uncountable number of estimators which have
to be implemented in order to obtain x(t) for any
te R... MWe discuss a practical implementation of
these regults in Section IV.C,

Next, we shall extend our Theorem 4 and Col-
lary 3 results to the case where there is a known
forcing fucntion in the state equation, that is,
to the case when B#0 in .

Theorem 5. Let x(t) denote the minimum-vari-
ance estimator of x(t) for 4 in Eqs. (1) and (2).
Let X,(t) denote the minimum-variance estimator of
x(t) under the .assumption that B=0 in Eq. (1).
Additionally, x;(t) is associated with the follow-
ing modified measurement equation:

zl(t) = y(t) - H g(¢) (52)

vhere g(t)e R" satisfies the uniform causal func-
tional equation

g(t+1) = A g(t) + B u(t) (53)
for which

g(o) = 0 vocd. (54)
Then,

x(r) = X (¢) + g(e) . (55)

The proof of this theorem is given in Appendix
A. The essence of the theorem is that x,(t) can be
computed using Theorem 4 or Corollary 3 for the
modified measurement y,(t) which can be constructed
a priori from y(t) and g(t). Signal g(t) can be
precomputed since m(t) is known a priori. The
solution of Eqs. (53) and (54) is given by Eq. (13)
vhere x(t') = 0 and v is replaced by Bm. We then
obtain the desired estimate of x(t), _)g?t). by the
simple linear transformation in Eq. (55).

Theorem 5 provides the formal results for
%x(t). We do not recommend calculating x(t) by
Theorem 5; for the calculations involve solving
an auxiliary causal functional equation. A more
practical way for computing x(t) is given in the
following:

Corollary 4. Let X(t) dengte the minimum-
variance estimator of th) for @ in Eqs. (1) and
(2). For any fixed t'cey , x(t) = x(t'+Mt) can
be computed from the following:

X(E'+MT) = AZ[t'+(M-1)1] + Bam[t'+(M-1)1]
+ K(t'+M1) (y(t'+M1) - HAX[t'+(M-1)7)
- HBm[t'+(M-1)t)} , (56)

where P[t'+Mt[t'+(M-1)t], K(t'+Mr), and




P(t'+Mt|t'+M1) are given by Eqs. (48), (49), and
(50), respcctively, and M = 1,2,... . Addition-
ally, &(t') = E(x(t')} and P(e'[c)) = Elx(c)
x'(t')) = A,

Proof: For t = t'+Mv, we can express x(t +
Mr) by means of Eqs. (55), (53) and (47), as

2(c'Mr) = gx(:'-mr) + g(t"+Mr)

= A% [t'+(M-1)T] + K(t"+Mr) {y, (t'+¥v)
- HAX, [e'+(M-1)T]} + A g[e'+(M-1)1)
+ Bmft'+(M-1)1) (57)
vhere, from Eqs. (52) and (53),
yl(t'ﬂlt) = y(t'+Mtr) - H g(t'+Mr)
= y(t'+Mt) - HAg[t'+(M-1)7]
- HBm[t'+(M-1)7) (58)

Substitute Eq. (58) into Eq. (57), making use of
Eq. (55), to show that.

E(t'4M0) = Ax[t'+(M-1)1] + Ba[t'+(M-1)1]
+ K(t'4Mr) (y(t'+Mt) - HAZ(t'+(M-1)1]
- HBm[t'+(M-1)1]) (59)

which is our desired result, Eq. (56). Observe
that gain matrix K(t'+Mt) !n Eq. (59) is the same
gain matrix as in Eq. (47); hence, {t is computed
from Eq. (49), and P[t'+Mt|t'+(M-1)1) and
P(t'+Mr|t'+M1) are computed from Eqs. (48) and
(50), respectively.

We see that a known forcing function in a
uniform crusal functional state equation is handled
in the estimator equation in exactly the same
manner that such a function is handled for a
finite-difference equation. It does not affect
the error covariance equations.

4. Computation
A. Introduction

In Section 2, we demonstrated that the solu-
tion, x(t), of causal functional equation (1)
can be generated by an uncountable number of
discrete-time systems. In Section 3 we demonstra-
ted that x(t) (tc R ) can be generated by means of
an uncountable number of discrete-time Kalman
filters. When we simulate our results on a digi-
tal computer, computations are made every T sec.
at discrete time points. Consequently, on a
digital computer, x(t) is generated by a count-
able number of discrete-time systems, and x(t) is
generated by a countable number of discrete-time
Kalman filters. We explore the detailed ramifica-
tions of thcse observations below.

B. Digital Computer Simulation of Uniform Causal
Functional Equation

We assume here that t is an integral multiple
of sample rate T; i.e., we assume that

t = LT (60)

.. The approximation denotes a temporal quantization.

which may be needed to associate a value of L with
t. For v = LT, Q *oc. where

J = {t': t' = 2T, £ = 0,1,...,L-1} (61)

Set J has a countable number of elements. It
does not include t=t1, since set+] does not include
that point.

We direct our attention at Eq. (13) which is
the solution to uniform causal functional equation
(21). Observe from Eqs. (60) and (61) that

t' +pr=(L+1LpT . ° (62)
Letting
x,(p) 4 x[(2 + Lp)T] (63)
and
v, (p) A wl(2 +1p)T] , (64)
We see that (13) can be written as
x, (kt1) = A" 2 (0) + ,Zo Aty (65)

where ¢t = 0,1,...,L-1. This equation is the well-
known solution to the following finite-difference
equation (Ref. 20, for example):

x, (k1) = A x, (k) + w, (k) (66)

where £ = 0,1,...,L-1 and k = 0,1,2,...,k*. We
conclude, therefore, that the sampled solution to
our uniform causal functional equation can be
generated as depicted in Figure 2.

To begin, we must fix our useful data length
at an integer multiple of t, say Nt. In terms of
our sampling rate, T, our useful data length is
NLT sec.

On a discrete time-scale the Ornstein-Uhlen-
beck process, with B+=, reduces to a discrete-time
white noise sequence {w(jT), j = 0,1,...,J*} where
E{w(JT) w'(UT)} = Q4 In order to cover the
useful data length, vl choose

J* = NL (67)

we create sequences wo(k), w; )y seos ¥ (k),
which are nceded to s nulate Eq (66) by aorting
and distributing {w(jT), j = 0,1,...,NL} according
to the distribution algorithm given on Figure 2.

Index k ranges from zero to k*. To determine
k*, we observe that the very last value of w[(f +
Lk)T) used by the distribution algorithm
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(set ¢ = L-1 and k = k*) {s w{{(k*+1)L-1]T}.
Since J is an open interval on its right-hand end,
the argument of this function must equal NL-1;
hence,

k* = N-1 (68)

Our L noisc sequences, _o(k). _J(k). ke
w1 (k), drive L systems, each given by Eq. (66),
vhich operate in parallel. Solving our uniform
causal functional equation on a dlgital computer
has led to a parallel data processing algorithm,

As a final step we generate (x(jT), j = O,
},...,NL-1} by multiplexing xg(k), X(k), ...,
31-1(k) using the multiplexor algorithm also
given on Figure 2. It is straightforward to
show that

{x(JT), 3=0,1,...,NL-1} = {50(0).5_(0),...,5L_1(0x
Xg(1)ax) (1) ceaxy 3 (1,0, X0 (k4D x, (k#),
""El-l(k*); (69)

Also, given k and 2, J = f+Lk.

C. Digital Computer Simulation of Minimum-
Variance Estimator

We now direct out attention at the simulation
of Eqs. (47)-(50). As in Section B, we assume
that time is discretized so that Eqs. (60) and
(61) are true. Letting

x, (M) 4 X[(2 + LOT] (70)

K, (M) 4 K((L + LMT] (71)

P, (M[M-1) A P[(L + LOT|(2 + 1M - L)T] (72)

rl(ulu) 4 P[(L + LMT|(2 + LMT] (73)
and

y, (0 4 yl(2 + 1)), (74)

ve rewrite Eqs. (47)-(50) as:
gl(nln) - A_gl(n-lln-x) + K (0 [y, (M)
- HAil(M-I(H-l)] (75)
r.(nlu-l) = AP‘(H-IIH-I)A' +Q (76)
K 00 = P, (4[u-1)H" (e, (M[M-1DR + R]TD (1)
and
r((n!m = [1 - K, (DH) Pi(MIM-l) (78)

where for cach € (€=0,1,...,L-1), M= 1,2 ...,
M* = N<1, and,

x,(0]0) = E(x,(0)} (79)
P (0f0) = A . (80)

th

We refer to Eqs. (?5) - (80) as the £ Kalman

filcer, KFl.

We obtain x(JT|JT) (j=1,2,...,J* = NL-1) by
means of the parallel data processing algorithm
depicted in Figure 3.

The Kalman filters do not generate estimates
over the initlal time interval 4’C- for,_over that
interval x (OIO) is given a priori. The first
measurement used by KFy is y(LT), whereas the last
measurement used by KFp_; 1s y[(NL-1)T]; hence, we
must have the sequence (z(jT), j=L,L+1,...,NL-1}
available at the start of the simulation. Kalman
filter outputs x _D(MIH) (H|H),...._L_1(H|H) are
multiplexed to give the desired estimates =

{x(jT|3T),J=L,L+1,...,NL-1} = (30(.1_|1) .glulx).
Xy (11),%02]2),%,(2]2), .. 0%, 2]2),
<+ +sXo (N-1|N-1) %, (N-1|N-1),

cennXy  (N-1[N-1)} (81)

For a time-varying system A!, we must make
the following substitutions in Eqs. (75)-(78):
Ap(M) » A, Hp(M) > H, Qp(M-1) -~ Q, and Rp(M) + R,
where, for example,

A (H) A A[(2 + IM)T] (82)

In this case, each of the L Kalman filters has no
common calculations, and the computational burden
can be quite heavy.

If, on the other hand, system‘J is time-in-
variant or slowly time-varying (i.e., all matrices
are pilecewise constant over t sec intervals), then
Eqs. (76), (77), and (78) are not functions of &
(remember that £ is used to define Jc, and JC
is less than t units in length). Hence, in these
cases we need only calculate P(M|M-1), K(M), and
P(M|M) for M = 1,2,...,N-1 once. These calcula-
tions are then used by all L Kalman filters, which
greatly reduces the computational burden.

A flowchart for implementing the L Kalman
filters, when is time-invariant or slowly time-
varying, is depicted in Figure 4. Because the
outer loop varies M and the inner loop varies i,
outputs P(H[H) and _1(M|H) are generated in multi-
plexed ordering. This can be verified by listing
the sequence of outputs from this flowchart and
comparing them with the right-hand side of Eq. (81)
to see that they are identical.

5. Con¢lusions

In this paper we have derived the minimum-
variance state estimator for uniform causal func-
tional equations. These equations are useful for
modeling layered media systems which are described
by the lossless wave equation and boundary condi-
tions. Causal functional equations, though con-
tinuous-time in nature, bear a strong resemblance
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to discret-time equations. In fact, we have

shown that the solution, x(t), of uniform causal
functional equation (1) can be generated by an un-
countable number of discrete-time systems. We
have also shown that for any fixed t'e = [0,1),
x(t), where t = t' + Mt (M = 1,2,...), is given
by the usual discrete-time Kalman filter equations
with t' considered the initial starting time. Of
course, to obtain x(t) for all te R we would need
an uncountable number of discrete-time Kalman
filters; but, imposing a mesh onv7 leads to a
countable number of Kalman filters which operate
in parallel, as depicted in Figure 3. To the

best knowledge of the authors, this is the first
estimation theory result that has led to a natural
form of parallel data processing.

The results of this paper are not merely an
end unto themselves. An important problem for
layered media systems is to extract reflection
coefficients from noisy measurements. This if
often referred to as an inverse problem (Refs. 3,
4, 7, 8 and 10), and usually, solutions are given
only for noise~free measurements. The reflection
coefficients appear in matrix A. By means of the
results of this paper, two appraoches can be
studied for solving the inverse problem. In the
first approach, we augment state equations (one
for each unknown parameter) to Eq. (1) and develop
an extended minimum-variance estimator for the
resulting augmented system. Of course, the
augmented state equations must also be causal
functional in nature or else, if they were dif-
ferential equations, our augmented system would
be heriditary in nature and a different course
of action would have to be taken. In the second
approach, we estimate the reflection coefficients
by a maximum-likelihood technique. To accomplish
this, we must first develop the correct likelihood
function for a uniferm causal functional equation.
Both of these approaches are presently under
investigation.

Acknowledgment

The work reported on in this paper was per~
formed at the University of Southern California,
Los Angeles, Californfa, under National Science

Foundation Crant NSF ENG J4=02297A01.-4Adix. Force

Office of Scientific Research Grant AFOSR 75-2797,

and Chevron 0il Field Research Co. Contract-76.
The first author wishes to acknowledge the support
of the Hughes Fellowship Program during the
course of this study. The authors also wish to
acknowledge Dr. Richard Bucy, of the University

of Scuthern California, for suggesting the
Ornstein-Uhlenbeck process to them.

Appendix A. Proof of Theorem 5

Let x _1(r) be associated with system ¥
vhen B=0; that is to say, x, (t) satisfies

X, (e41) = Ax, (t) + u(t) (A-1)

where
x,(0) 4 x(0) ¥ oV (A-2)

Add Eqs. (A-1) and (53), and (A~2) and (54), to
show that

X% (e41) + g(edr) = Alx, (£) + g(t)] + Ba(c)

+ w(t) (A-3)
and
x,(0) + g(0) = x(0) v oev (A-4)

Comparing Eqs. (A~3) and (1), and (A-4) and 23),
we conclude by uniqueness, that

x(t) = x, (t) + g(t) (A-5)
Next, we define the modified measurement vec-
tor zi(t) in Eq. (52). That y;(t) can be express-
ed solely in terms of 51(:) is apparent, when Eqs.
{(2) and (A-5) are substituted into Eq. (52); i.e.,
Yy (t) = Hx,(t) + n(t) (A-6)
Observe that Eqs. (A-1) and (A-6) are now of
the right form to use Theorem 4 to obtain x (t) =
E{x (t)|Y;(t)}, where Y;3(t) = {y, (\): 0 < g <,
te R }.
From estimation theory, we know that
#(r) = E{x(t) [¥(t)} (A~7)
Applying (A-7) to (A-5), we find that
x(t) = E{x, () [¥(t)} + g(t) (A-8)

since g(t) is deterministic. We must now prove
that

E{x, () [Y(0)} = E{x) (£ [¥, ()} = (t) (4-9)

in which case Eq. (A-8) reduces to the desired
result in Eq. (55).

We shall examine the sigma fields generated
by y(t) aund y;(t). Let j,y and y; denote
the sigma fields associated with y(t) and y;(t),
respectively; i.e.,

ly « {: y(t,w) <a}  aer® (A-10)
and
Ay, = tut g.t0) <8} acs® (A-11)
1 241 o

From Eq. (52), we see that /£f can be expressed
in terms of zl(t), as

ﬂy = {w: y,(t,w) + Hg(t) < ak aek®; (A-12)
hence,

Jy = {w: y,(t,0) <0 ~ Hg(t)} aer® (A-13)




9

1f g(t) s finite for any fixed t, « - Hg(t) also 13. A. Papoulis, "Probability, Random Variables,

ranges through R¥. This conditfon on g(t) is and Stochastic Processes," McGraw-Hill,

satisfied as long as Bm(t) is finite for any fixed New York, 1965.

t. Consequently, 14. J. S. Meditch, "Stochastic Optimal Linear

) ~ Estimation and Control,” McGraw-Hill, New York,
A - ey (e <o) aper (A-14) 1969.
y ] 15. A. H. Jazwinski, "Stochastic Processes and
which proves that de = “dy . P Filtering Theory," Academic Press, New York,
1 1970. vt & o =
Since y(t) and y. (t) generate the same sigma 16. G. E. Uhlenbeck and L. S. Ornstein, "On the
fields, conditioning with respect to y(t) [or Theory of Brownian Motion," Phys. Rev., vol.

Y(t)] is equivalent to conditioning with respect 36, 1930, pp. 823-841.

to y;(t) [or Yl(t)]; hence, Eq. (A-9) is true, 17. J. L. Doob, "The Brownian Movement and

and, as we pointed out above, Eq. (A~8) reduces Stochastic Equations," Ann. Math., vol. 43,

to the desired result in Eq. (55). 1942, pp. 351-369. 'y

18. E. Parzen, "Stochastic Processes," Holden-Day,
San Francisco, 1962.
19. W. Feller, "Introduction to Probability Theory
References and Its Applications," vol. 2, John Wiley and
Sons, New York, 1966.

1. P. C. Wuenschel, "Seismogram Synthesis 20. J. M. Mendel, "Discrete Techniques of Para-
Including Multiples and Transmission meter Estimation: The Equation Error Formu-
Coefficients," Geophysics, vol. XXV, lation," Marcel Dekker, New York, 1973.
February 1960, pp. 106~129.

2+ E. A. Robinson, "Basic Equations for Synthe-
tic Seismograms Using the z-Transform
Approach," Geophysics, vol. XXXIII, June List of Figures
1968, pp. 521-523.

3. E. A. Robinson, Multichannel Time Series Figure 1 Illustration of time-line mapping rule
Analysis with Digital Computer Programs, (11). If, for example, t = 20 msec
Holden-Day, San Francisco, 1967 (Chapter 3). and t = 3.15 sec, then M = 157 and

4. J. F. Claerbout, Fundamentals of Geo- t' = 10 msec.
physical Data Processing, McGraw-Hill, Figure 2 Parallel solution of a uniform causal
New York, 1976. functional equation (J* and k* are

5. A. Trorey, "Theoretical Seismograms with defined in Eqs. (67) and (68), res-
Frequency and Depth Dependent Absorption," pectively).

Geophysics, vol. 27, no. 6, December 1962, Figure 3 Parallel solution of minimum-variance
pp. 766-785. estimation equations for a uniform

6. S. Treitel and E. A. Robinson, "Seismic causal functional equation.

Wave Propagation in Layered Media in Terms Figure 4 Flowchart for implementing L Kalman
of Communication Theory,” Geophysics, vol. 31, filters and the multiplexor, when
pp. 72-32, February 1966. is time-invariant or slowly time-varying.

7. E. A. Robinson, "Dynamic Predictive Decon-
volution," Geophysical Prospecting, vol. 23,

December 1975.

8. E. A. Robinson and S. Treitel, "The Spectral
Function of a Layered System and the Deter-
minat ion of the Waveforms at Depth," Geo-
physical Prospecting, vol. 25, 1977.

9. E. Szareniec, "Fundamental Functions for
Horizontally Stratified Earth," Geophysical
Prospecting, vol. 24, pp. 528-548, 1976. " " 3

10. H. Wakita, "Direct Estimation of the Vocal l;ﬁ A ? S % E VMt ey 1

] Tract Shape by Inverse Filtering of Acoustic [t | Yer I te2r | | | towr]
3 Speech wWaveforms," IFEE Trans. on Audio and o T 2r 3 Mr  (Mel)r
4 Electroacoustics, vol. AU-21, October 1973,
3 pp. 417-427.
- 11. N. E. Nahi and J. M. Mendel, "A Time-Domain
Approach to Seismogram Synthesis for Layered
. Media," presented at the 46th Annual Inter-

natfonal Meeting of the Society of Explora-
tion Geophysicists, Houston, Texas, October

S———

24-28, 1976. aadh
12. J. M. Mendel, N. E. Nahi, L. M. Silverman,

and H. D. Washburn, "State Space Models of

Lossless Lavered Media," presented at 1977

Joint Automatic Control Conference, San

Francisco, California, June 1977.




- - o v R W E TR

' Mol K
‘ Wiite e e 1
Sequerce -
{stirrpeon....s} ‘
St Owvibton Agordbwn (£20,1,....L "1
Oenaute . .,m-(-il-un]h..- -~ i - 3
o 5 a0 ) i\
i
[ w W :
Oucrete- Teme.
Sete [ouotion e
B o 2/0lo :
3/olo Compute \4
Muitiplesor Algorithe (820,1,.. ., 8°) ’il(MIM) /‘
{aumse 0w} {yo,
A e ond (204,101}
ftitnisou... me-1)
Viguee @
i istten. Nt} rmu )
istribution ithm (L= ~ab)
y,M)s{y[(£+LMIT| [ tixed ond
L
Figure 4
X KFL_|
s Im
UL
| Multplesor Algorithm (Ms1,2,... N-1)
fuThm s N s (G,
aiipisace M fixed ond IIO.I..-..L"} N
{'?(,rl,!).pL.L‘l. .v,NL'I}

§

R g N T S A 4T




